

Tiyu Wang, Aditya Mittal, and Kathryn Hymes are M.S. students in Institute of Computational and Mathematical Engineering at
Stanford University. The model for error detection using Hamming Codes presented in this paper was constructed for the CME352
class project offered by Ashish Goel during Winter 2008.
Contact: tiyuwang@stanford.edu * admittal@stanford.edu † kehymes@stanford.edu ‡

Hamming Codes in the Context of DNA Self Assembly

Tiyu Wang
*

Stanford University

Aditya Mittal†

Stanford University

Kathryn Hymes‡

Stanford University

ABSTRACT

We construct and simulate a tiling system capable of detecting errors in a given (L, D) Hamming Code

represented as a ‘seed’ column where L is the length of the code, and D is the number of data bits. Our

tiling system is a novel system which has O(1) tiles built upon modifications of the existing binary

counter tile system constructed by Goel et al. Using just 32 tiles this system self assembles into a

���(� −) × � rectangle at temperature 2 with only single strength glues. The correctness of each

parity check from the Hamming Code is shown as one of two glues on the northern edge of the system.

The robustness of the system is demonstrated via XGrow simulations.

Introduction
In our work we develop a Wang Tile Model for using Hamming Codes in the context of DNA Self

Assembly. We see this as a promising potential mechanism for error correction and reduction in

combinatorial tile systems. Our system has several advantages such as modularity, making it compatible

with other models and blocks we build in the future that can be attached as inputs; it has a constant

number of tile types so the tile types don't grow linearly with the size of the system; and is built upon

the nice mathematical formulation of Hamming Codes which gives it more potential for future

development. After formulating the system, we also simulate it in XGrow to demonstrate its robustness.

Our work gives rise to some open problems we discuss at the end of the paper.

To create our system we begin with a seed column and a seed row. The seed column encodes the

hamming code to be checked and the seed row is used to start off the system. The seed row is the same

as that of the seed row of the binary counter with double strength glues replaced by single strength

glues. In solution we construct the system at temperature 2. The replacement of the double strength

glues by single strength glues ensures that the system will stop growing after exactly L layers, allowing

for Hamming Codes that are not necessarily powers of 2.

Then we replace each of the tiles in the eight tile binary counter system with 4 tiles capable of

transmitting parity information toward the next tile, and discriminating between taking into account or

skipping a data bit depending on the parity bit being checked. The 32 tiles of the system constructed in

this manner are demonstrated in Figure 1.

Our idea in developing this 32 tile system is to exploit the correspondence between the parity bit

positions in the hamming code and the columns of the binary counter. This idea helps us avoid keeping

Page 2 of 10

track of parity and data bit positions in the hamming code separately. We replace each tile in the binary

counter with 4 tiles as follows:

Replace the right glue with 2 types of glues, and that will transmit the parity of the tile on the right.

The lower glue will transmit the parity information from the tile below to the tile above so the

information passed along sequentially to the top of the system. We do this by adding the parity for the

right and bottom glues and making the sum mod-2 the parity of the top glue. This is done for all the

variations of the 1-tiles. In the case where the label of tile is one of the four variations of 0, then the top

are assigned the same parity as the bottom tiles as these tiles are designated to ignore the parity of the

bit they are encoding. The left tile will just replicate the parity portion of the right tile as this will

transmit the Hamming code over to the next column to allow for the next parity check. This system will

stop growing once all the parity checks are done after all the columns have been filled.

This system was simulated in XGrow and allowed no mismatches. At first we discovered that having

double bonds in the binary counter base of our system gave rise to mismatches, but after the single

bond modification mentioned earlier the problem was resolved, since an incorrect tile can never attach.

With a double bond a tile can start growing a new row in the binary counter that does not necessarily

match up with the right glue of the corresponding Hamming code bit.

Background

Tiling Systems

The process of self assembly is ubiquitous in nature by the spontaneous formation of molecular

structures from the reactions of smaller components: atoms assemble into molecules, which can further

aggregate and react to form crystals, larger biomolecules and organisms. DNA is a prominent molecular

building block with a variety of physical properties that lends itself well to use in artificial self assembly.

The important thing about using DNA is its combinatorial nature. This allows us to create a

combinatorial model in theory and then try to implement it in practice. It also provides us with a means

to develop a model for computation. The model we use in order to exploit the combinatorial nature of

DNA is known as the Wang Tile Model after its inventor Hao Wang in 1961. The concept of tiling is an

ancient concept which has been used in Mosaics, flooring, and many geometrical constructions. In his

model Wang used tiles to construct a formal system in order to prove results about whether a plane

could be filled with a certain set of tiles. “Winfree et al. have demonstrated the feasibility of creating

molecular "tiles" made from DNA (deoxyribonucleic acid) that can act as Wang tiles. Mittal et al. have

shown that these tiles can also be composed of peptide nucleic acid (PNA), a stable artificial mimic of

DNA.” [9].

Given that Wang Tiles compose the basic elements for assembly we can start with a seed strand of DNA

corresponding to a seed tile and build a tile system on it. The tiles attach by means of individual glues of

a particular strength represented on each side of the tile. These glue connections must correlate with a

specified system temperature in order to assure binding of a tile. For our model we will assume this

temperature to be 2 and will discuss its implication in the Simulation section. From this seed tile, tile

Page 3 of 10

attachments continue until a final stable tile assembly is formed. Natural DNA self assembly utilizes

explicit mechanisms for the prevention and correction of errors. Developing efficient and robust error

correction methods is even more critical for artificial self assembly with the goal of constructing large

systems with fine precision.

Error Correction

Binding errors naturally occur in the process of assembly. Single glue attachments occur frequently in

solution but are generally not stable due to temperature constraints. Under certain circumstances,

mismatched tiles do bind and become incorporated into the overall tile structure. Erroneous tile

attachment at a point of potential stable binding is known as a growth error, while premature binding of

a tile at an inactive site of the assembly is referred to as nucleation error. In order to construct molecular

models capable of computation, precision and reliability of assembly is of paramount importance. For

this reason, active effort has been taken to accurately identify and correct erroneous binding.

Existing error correction and prevention methods can largely be characterized by two classes of

approach. Identifying natural mechanisms of DNA self assembly and investigating their potential use in

algorithmic setting comprises one class. Examples of leveraging a biological process in an artificial

system include strand invasion and the use restriction and ligation enzymes.

A second approach takes inspiration from coding theory and implements a more combinatorial design in

error correction methods. Coding theory offers a myriad of error correction schemes that have been

formulated for use in information transmission. An obvious goal would be to port these methods for

error detection and correction to tile systems and evaluate their effectiveness. One simple technique is

data repetition. Winfree and Bekbolatov modeled this approach in the context of tile systems with the

introduction of tile proof reading. In their formulation, an original n x m assembly is mapped to a larger,

redundant system when each individual tile is replaced with a k x k block. Proofreading tiles have been

shown to reliably correct growth errors but not nucleation errors.

Another error detection method is that invented by Goel and Chen known as Snake tiles. With their

formulation, each tile in the original system corresponds to four tiles in an error-correcting system. All

internal glues are chosen to be unique to a specific 4-tile block. The advantages of this system become

apparent with an example of binding error. When a first error tile attaches with a weak binding strength

at a site that is not currently active for growth, a second tile may attach thereby securing the first tile. At

this point, even leveraging previous error detection methods, the error introduced is now secured in the

assembly and tiles will incorrectly propagate in the original system. With the snake tile model, no other

tiles can attach without additional nucleation errors. This prevents incorrect tile propagation even after

k+1 nucleation or growth errors.

Hamming Codes
Suppose one wants to detect whether there is a one bit error in a string of 0’s and 1’s. A commonly

known mechanism to do this is to add an additional bit which describes the parity of the string, i.e.

whether the sum of the elements of the string is even or odd. Hamming codes are an extension of this

Page 4 of 10

idea of parity to add more bits to a string to detect and possibly even correct errors that may be in a

string of 0’s and 1’s. Parity bits, Two-out of Five Codes, and Repetition are examples of error detection

mechanisms predating Hamming Codes.

As we develop the field of DNA computing, it is a necessity to determine errors, in order to build robust

computing systems. While there are some existing models for error detection and correction built on

the Wang tile model such as the proof reading tiles and snake tiles described previously, these methods

have high growth rates and are not easily extended to novel systems. Given this, we decided to use the

well understood mathematical formulation of Hamming Codes in order to detect errors. Unlike the

other known methods, we have not yet shown how to correct or reduce errors, only error detection

given a Hamming Code. This is not to say that we will not be able to correct errors, as Hamming Codes

have an established mathematical formulation that is also useful for error correction. Investigating this

will be a future area of work. Before this, the next step will be to develop ways to generate the

Hamming Code that acts as input to our error detection TAK model. First let us describe the construction

of Hamming Codes.

Hamming Codes are linear error detection and correction codes that were first prescribed by Richard

Hamming. In order to construct a Hamming code from a string of 0’s and 1’s we begin by assigning

parity bits to every position that is a power of 2. All other positions correspond to data bits. The way

the value of the parity bits is determined is by letting the first parity bit encode the parity of every other

bit, the second parity bit encode the parity of every other two bits, the fourth parity bit encode the

parity of every other fourth bits and so on. The goal of a Hamming Code then is to create a set of parity

bits that overlap such that a single-bit error (the bit is logically flipped in value) in a data bit or a parity

bit can be detected and corrected.

Bit Number 1 2 3 4 5 6 7

Transmitted

Bit

P1 (2
0
) P2(2

1
) D1 P3(2

2
) D2 D3 D4

P1 Include No Include No Include No Include

P2 No Include Include No No Include Include

P4 No No No Include Include Include Include

The table above demonstrates the Hamming (7,4) Code, meaning that four bit data is encoded in 7 bits.

This code allows us to detect and correct all errors with Hamming distance 1 and detect all errors with

Hamming distance 2 because the parity beat provide the appropriate overlap. A Hamming Distance is

the bitwise distance between any two words of equal length and has all the properties of a metric. For

example, the Hamming Distance between 010101 and 101110 is 5. The first tile system we built

correctly computed the Hamming Distance between two words. We then built a tile system that given a

Hamming Code determines whether it is a feasible code or there are errors which grew linearly in O(n).

We finally improved upon our construction using the workings of a Binary counter with some

modifications such as changing the double strength glues to single strength glues and adding it into our

model to achieve a tile system that could do the same in constant number of tiles. Finally we simulated

Page 5 of 10

our model in the XGrow Simulator and got it to work perfectly. In the next section we describe our tile

model, and then we describe our simulations.

The TAK Tile Model
We have called our tile model TAK tile model. The TAK model assumes that it is given a “seed column”

of tiles as input which represents the purported Hamming Code for a certain data string. We build a tile

system capable of detecting whether the given Hamming code is feasible. To do this, we check the

correctness of every parity bit in the code against the data bits that it encodes. In the context of self-

assembling tile systems, this intuitively entails building a column of tiles next to the seed column for

each parity bit. Each column has as its output a “0” or a “1” represented as “north” glues of the top tile

in the column. For example, the Hamming (7,4) code is checked by a 3x7 rectangular block of tiles that

has 3 outputs of 0’s and 1’s that tells us whether each of the parity bits (p1,p2 and p4) is correct. As it

turns out, this is the correct intuition and is the structure for our error detection model.

A naïve approach for building such a tile system entails having a unique set of tiles for each column. This

approach requires O(log(L) × �) tiles in solution rendering it infeasible. We now demonstrate a

feasible tile system that requires �(1) tiles.

The key insight that motivates this system is the observation that each successive parity bit of the

Hamming code checks bits that correspond to the distribution of 1’s and 0’s in the corresponding

columns of the binary counter. For example, the first parity bit of the code encodes every other bit in

the Hamming code while the second parity bit encodes (starting at the parity bit) and then skips two bits

at once. Since we decided to use the binary counter tiles to build our structure, we also do not have to

keep track of which bits are parity bits and which bits are data bits, and therefore, do not need special

glues to encode this information, as is the case with the naïve approach.

Example: The 3 bit binary counter starting at 1:

Bit

Number

1 2 3 4 5 6 7

P1 1 0 1 0 1 0 1

P2 0 1 1 0 0 1 1

P4 0 0 0 1 1 1 1

If we line up the Hamming(7,4) code that we need to check against the binary counter, then if we check

the 1 positions of the code for the corresponding parity bit then if the parity of the “subcode” is 0 then

we know that the parity check is correct as one of two situations occur: The parity bit and the checked

code are both 1 or the parity and checked code are both 0. If the parity of the “subcode” is 1 then the

parity bit is not the same as the parity of the checked code and hence is an error.

We now give the details of our 32 tile system for error detection in any (L,D) Hamming Code. We base

this system on modifications of the binary counter tiling system constructed by Goel et al. in Optimal

Self-Assembly of Counters at Temperature Two. Their system contains 8 tiles as follows:

Page 6 of 10

 [3]

We expand each of the 8 tiles in the binary counter system to 4 separate tiles as the following example

on the tile illustrates:

We replace the z glue on the right with 2 types of z glues, and that will transmit the parity of the

tile on the right. The lower glue will transmit the parity information about the tile immediately below to

the tile above so the information will be transmitted sequentially to the top of the module. This is done

by adding the parity for the right and bottom glues and making the sum mod-2 the parity portion of the

top letter. This is done for all the variations of the 1-tiles. In the case where the central label of tile is

one of the variations of 0, then the top tiles will be designed to replicate the parity of the bottom tiles as

these tiles are designated to ignore the parity of the code they are encoding. The left tile will just

replicate the parity portion of the right tile as this will transmit the Hamming code to the next column to

allow for the next parity check. Hence we just need to provide a seed column of tiles that represent the

Hamming code along with a seed on the bottom that has a row of “starter” tiles attached to the left that

will have the appropriate 0 tiles on top to start off the parity check. The following graphic illustrates all

the 32 tiles in our system encoded as Wang tiles along with a key for identifying bond types with the

corresponding color scheme:

Figure 1

Page 7 of 10

Figure 2 illustrates the application of our system to the 1011001 Hamming code, on the right we have

the seed column with light blue representing 1’s and dark blue representing 0’s. The outputs are the top

glues of the 3 leftmost tiles on the top row. With the yellow glue representing an error and the navy

blue glue representing a correct parity check. So for 1011001 is incorrect while and are correct

parity bits.

Figure 2

Simulation
A model would not be a useful error detection/correction system if it was error prone itself. Therefore,

we present the simulation results of our model that demonstrate its robustness. The 32 tiles of our

system in addition to the seed row and column are represented in XGrow where the seed row and

column are designed using a single seed that filled the empty square in the bottom left corner in Figure

2. Figure 3 below shows the simulation with the seed tile in green.

Figure 3

The top row in Figure 3 of the simulation has 2 white blocks and one yellow block showing a 1 bit error

in the Hamming(7,4) Code which is represented in the rightmost column. The Blue tiles represent 1’s

and the Red Tiles represent 0’s. Through simulation we discover that we can get perfect robustness by

altering the binary counter inside our structure by replacing all double bonds with single bonds whereas

Page 8 of 10

without this we had 2 mismatches per run on average and an extra layer of growth on top of the system.

We checked that our system works with multiple hamming codes and it works correctly with 0

mismatches every time showing its robustness. Figure 4 shows that a sequence of 12 zeros results in all

white tiles in the top rows representing that it is a valid hamming code. Figure 5 shows that the (12,8)

hamming code 011100101010 is completely correct.

http://www.ee.unb.ca/cgi-bin/tervo/hamming.pl is a Hamming Code Simulator which we used to

continue checking more codes, and our simulations show that the model works with 0 mismatches all

the time and is robust.

Figure 4

Figure 5

Page 9 of 10

Future Work and Open Questions
So far our module takes a Hamming Code as input and detects p-1 bit errors where p is the number of

parity bits. Hamming Codes can also be modified to have the power to correct 1 bit errors but our

system does not yet do this and we hope to build a system for this in the future. We would also like to

improve our system so along with error detection it also performs error correction, meaning if we input

a Hamming code with one error we would get as our output the Hamming with that error corrected.

Also, we need to determine how to generate tile models which result in L bit hamming codes that can be

used as an input to our TAK model. Another open problem is to determine how to update the hamming

code input for checking a system like a binary counter as the data bits are updated.

Acknowledgements
Special thanks to Professor Ashish Goel for teaching us about molecular algorithms in a clear and

comprehensive way. Without his advice and guidance this paper would not have been possible.

References
[1] L. Adelman, Toward a Mathematical Theory of Self Assembly. Technical Report 00-722, Department

of Computer Science, University of Southern California, 2000.

[2] H. Chen, Q. Cheng, A. Goel, M.-D. Huang, and P. Moisset de Espans. Proofreading tile sets: Error

correction for algorithmic self-assembly. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 883–892, 2004.

[3] Cheng, Q. Goel, A., and Moisset, P. Optimal Self-Assembly of Counters at Temperature Two.

University of Oklahoma, Stanford University, University of Southern California.

[4] Goel, A., Notes from CME 352: Molecular Algorithms, Winter quarter, 2008.

[5] Goel, A. et al., Error Free Self-Assembly using Error Prone Tiles. Stanford University, Stanford,

California.

[6] Hamming Code. http://en.wikipedia.org/wiki/Hamming_code, March 2008.

[7] Lukeman, P., Seeman, N. and Mittal, A. (2002). Hybrid PNA/DNA Nanosystems. In 1st International

Conference on Nanoscale/Molecular Mechanics (N-M2-I), Outrigger Wailea Resort, Maui, Hawaii.

[8] Tervo, Richard. Hamming Code Tool. University of New Brunswick, Department of Electrical and

Computer Engineering, September 2002.

[9] Wang Tile System. http://en.wikipedia.org/wiki/Wang_tile, March 2008.

[10] E. Winfree et al., The XGrow Simulator. http://dna.caltech.edu/Xgrow/xgrow_www.html.

Page 10 of 10

[11] E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction for algorithmic self-assembly.

In Proceedings of the Ninth International Meeting on DNA Based Computers. Madison, Wisconsin, June

2003.

[12] Winfree, E., Liu, F., Wenzler, L.A., and Seeman, N.C. (1998). Design and Self-Assembly of Two-

Dimensional DNA Crystals, Nature 394, 539-544.

